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Sufficient conditions for the stability of steady solutions of a multi-layer model are 
found. The basic flow may be either parallel, axisymmetric or non-parallel. The lower 
boundary of the model may be either rigid, including the possibility of topography, 
or soft. The latter, ‘reduced gravity’, case represents an ideal situation in which the 
active layers are on top of an infinitely deep, motionless one. 

Two conditions are sufficient to assure the stability of the basic flow. It is 
conjectured that unstable flows for which only the first or second condition is 
violated decay through Rossby-like or Poincar6-like growing perturbations, 
respectively. 

In order to understand the meaning of both conditions, assume that a quite 
general O(a)  ‘wave ’ is superimposed on the basic flow : an O(a2) energy integral, PE 
can be calculated. This wave energy is neither conserved, because the wave might 
exchange energy with the O(a2) varying part of the the ‘mean flow7, nor positive 
definite, because the perturbation might lower the total energy by increasing the 
speed where it decreases the thickness, and vice versa. Now, the first condition 
determines that S2E has an upper bound, and the second one implies that P E  is 
positive definite; hence the stability of the basic solution. In  the particular case of 
two-dimensional divergenceless flow, as well as for quasi-geostropic models, S2E is a 
priori positive definite, and therefore the first condition suffices to  guarantee the 
stability of the more basic solution. The conditions found here are indeed valid for 
more general perturbations, e.g. they prevent inertial (or ‘symmetric ’) instability, a 
phenomenon for which there is no distinction between wave and the varying part of 
the mean flow. 

1. Introduction 
One of the classical moves in the game of studying hydrodynamic stability consists 

in the search for conditions applicable to particular systems and flow patterns. 
Usually those conditions are suficient for stability or, equivalently, necessary for 
instability (changing the logical sign of the statement). For any set of conditions - 
and the method used to obtain them-one can ask two questions. First, how 
powerful are they, in the sense of how close they are to being necessary and suficient. 
Second, what does the fulfilment, or violation, of a certain condition say about the 
physical properties of the basic flow and/or growing perturbations. 

I shall address these questions here, for the particular case of multi-layer primitive 
equation models (figure 1). Their vertical resolution is classified by the parameter N ,  
which may be integer or semi-integer : a value of N = n + t layers, with integer n, 
actually means a model with n+ 1 layers in which the deepest one is a t  rest; it  is, 
then, a system with n dynamic layers and a ‘soft lower boundary. On the other 
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u = o  
Reduced gravity 

N = n + t  
Rigid bottom 

N = n  

FIGURE 1 .  Structure of the N-layer model. The left part shows the ‘reduced gravity’ case (semi- 
integer N ) ,  and at the right is depicted the rigid bottom case (integer N ) .  The parameters g; are the 
buoyancy jumps across the interfaces. 

hand, in a regular N-layer model, i.e. with integer N ,  the deepest layer has a rigid 
bottom, which may include topography. 

To set the context, consider a hydrostatic system with a single layer and reduced 
gravity g‘, i.e. a l+layer model. If there exists any value of a constant a such that 

and 
N =  11: 

2 

for all y then the zonal flow [u,v,h] = [U(y),O, H ( y ) ]  is stable (Ripa 1983). (The 
notation is standard, for example Q, equal to (f -dU/dy)/H, denotes potential 
vorticity. The basic flow is in geostrophic balance: fU+g’cW/dy = 0.) In a model 
with two layers (Ripa 1987 b, 1989), the second stability condition becomes (omitting 
the coordinate y for simplicity) 

N = 2 :  

if the system has a rigid bottom, which might include topography, or to 

in the ‘reduced gravity’ case (the lower boundary is the interface with a third, 
motionless layer; g; and g i  denote the buoyancy jumps across both interfaces). The 
first stability condition is simply replaced, in either case, by 

N=2or2;:  
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These are sufficient stability conditions ; necessary instability conditions are, 
therefore, that for any value of a (1) and/or (2) must be violated. 

Two peculiarities of the stability conditions call the attention. Firstly, an arbitrary 
constant a may be subtracted from the fields U,(y) : it is the variation of U that really 
matters. Thus uniform flow, U = constant, is stable to finite-amplitude per- 
turbations; for example there is no ‘baroclinic instability’ in a 1;-layer model. 
Secondly, there are two different stability conditions, or two sets of them. This is in 
contrast to the cases of strictly two-dimensional horizontal flow (N = 1) or the quasi- 
geostropic models, for both of which there is only one stability condition. 

The presence of the arbitrary constant a is not due to Galilean invariance, as is 
sometimes erroneously assumed, which is indeed a symmetry lost in the presence of 
Coriolis effects. Rather, it follows from zonal homogeneity of the basic flow under 
consideration, the evolution equations and boundary conditions (for example, a p- 
plane or sphere, with topography a function only of latitude, and with coasts along 
parallels). This property points towards a link between stability conditions and the 
symmetries of the problem : this relationship is clearly established when the former 
are obtained using the integrals of motion of the system, which in turn are related 
to its symmetries by Noether’s theorem; this is the basis of Arnol’d’s (1965, 1966) 
method (described in, for example, McIntyre & Shepherd 1987). 

On the other hand, the second condition is linked to the importance of horizontal 
divergence. Violation of this condition by an unstable flow is associated with the 
possibility of perturbations with negative or vanishing energy (see for example 
Marinone & Ripa 1984; Hayashi & Young 1987; Ripa 1990). It is harder to satisfy 
( ld )  than ( l c ) ,  which, in turn, is more demanding than ( l b ) .  Indeed, Paldor & 
Killworth (1987) find that a finite bottom layer (N = 2), instead of an infinitely deep 
one (N = It) ,  favours instability. More generally, the second condition is more easily 
violated in systems with richer vertical structure (larger N ) .  It is therefore interesting 
to question what happens in the case of continuous stratification, which can be taken 
as the limit of an N-layer system, when N+ co. 

Arnol’d’s method is spelled out in $3  for the particular case of the multi-layer 
‘primitive equations ’ model, whose evolution equations and conservation laws are 
presented in $2. The stability conditions are presented in $4, the difficulties 
encountered when trying to generalize them from a finite number of layers to the 
continuum case are discussed in $5,  and a conjecture on the structure of growing 
perturbations is presented in $6. The last section is reserved for a general discussion, 
and some mathematical details are presented in an Appendix. 

2. The multi-layer model 
The N-layer model of figure 1 is completely specified by the total volume of each 

layer (or the mean thickness, in the case of an unbounded horizontal domain) and the 
buoyancy jumps across the interfaces, g;(gi = 9). I am working with the (hydrostatic) 
primitive equations and making use of the Boussinesq approximation ; one can easily 
manage without it, but that only complicates the notation without much gain in 
physical insight. The dynamic variables are the thickness and horizontal current in 
each layer, h E {h,} and d = {a,}, the latter being independent of the vertical 
coordinate (the bold-face type denotes an n-vector in the space of layer variables, 
whereas the arrow indicates the position 2-vector in the horizontal plane). 
Independent variables are time t ,  the horizontal position [x, y] and the layer label j. 
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TABLE 1. Integrals of motion for system (3) 

The equations of motion are (omitting the layer subscript for simplicity) 

(3) 

The kinematic pressures and layer thicknesses are related, through the vertical 
displacements Cj,  by the hydrostatic and incompressibility conditions 

Pj+l-Pj = S,C*? ah, = a(Cj-l-!$), (4% b )  

where a denotes any horizontal or time derivative. These relations are closed by 
suitable bottom and top boundary conditions. First is the requirement of either ‘re- 
duced gravity ’ dynamics : N = n + t * Wpn+l = 0, or rigid bottom : N = n + aCn;,/at = 0 
(including the possibility of topography). Secondly, p ,  = 0 (no atmospheric pressure 
forcing); this could be replaced by the ‘rigid lid’ approximation which corresponds 
to the limit 

Thus pj is a linear function of the h,, except in the case when both boundaries are 
rigid, whence p i - p n ,  say, is a linear function of the h, (see Appendix). 

The integrals of motion for this system are given in table 1. Energy and 
momentum conservation are related to time and space symmetries of the evolution 
equations and boundary conditions: if there are coasts or topography that lack a 
particular symmetry, then the corresponding momentum is not conserved. The 
family of ‘Casimir’ integrals of motion, on the other hand, is associated with 
relabelling invariance, in a Lagrangian description of the flow (Ripa 1981 ; Salmon 
1982), or to the property of Eulerian equations of being non-canonical in the 
Hamiltonian formalism (Shepherd 1990). (Other integrals of motion, like the volume 
in each layer - or the average thickness, in the case of an unbounded domain - and 
the circulation around rigid walls, are but special cases of Casimirs.) The proof that 
all these are indeed constants of motion is rather trivial, with the exception of the 
potential energy, for which equation (A 10) in the Appendix is useful. 

q+m, c o + O  but g&(=p,) = finite. ( 5 )  
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The law of energy conservation then takes the form 

using (4) and (A l),  the potential energy term can be rewritten as (recall that p5 -p ,  
should be used, instead of pi, in the case of rigid top and bottom) 

(In deriving this equation, terms linear in pj or pi-pn are generated, whose time 
derivative vanishes, by virtue of (A 5 )  or (A 9) and the mass conservation law ( 3 c ) ) .  
The upper limit of the sum on the right-hand side equals n in the rigid-bottom case 
and n+ 1 in the reduced-gravity one; notice that if the rigid-lid approximation (5) is 
made, then the fist term, gc, vanishes. 

Equation (6) is written in terms of the total fields; splitting these, instead, as the 
sum of a (steady) basic solution plus the departure from i t  (the perturbation), 

+ - + *  + +  * + 

I( = V(x)+6u(x , t ) ,  h = H(x)+6h(x,t), (7) 

the energy density in each layer is expanded as (omitting the subscript for simplicity) 
+ 

$(u2 + p )  = +H( $ +P) ( 8 4  

(8b) 

(84 

+ H 6  6; + (;$ + P )  6h 

+ w6i2 + 6.6; 6h + i6h 6p 

+ ;ah 6G2. ( 8 4  

In the derivation of ( 8 b ) ,  c H,6p5 = cP,6hj  was used, which can be derived from (4), 
as is equation (A 10) in the Appendix. 

It is clear that the first line on the right-hand side, (8a ) ,  does not contribute to (6) 
because it is time independent, by construction. The integral of (8b) does not 
necessarily vanish, even though it is linear in the perturbation, because even if the 
latter were mainly a ‘wave ’ with zero mean, it will also include the varying part of 
the ‘mean flow’. Therefore, the integral of (8e) is not conserved. 

As an example - just as an example - consider the case of a zonal basic flow, [ U(y), 
0, H(y)], and split the perturbation in (7) in the form 

+ 1 (9) 
ah = hm(y, t) + hw(x, y, t), 

~u = um(Y, t)  + uw(x, y, t), J + +  

where the ,subscripts m and w denote zonal average and deviation from it, 
respectively. Let {&,., h,) be, to lowest order, an O(a) wave; then, {Gm, h,} represents 
the O(a2)  variability of the mean flow. Each one will be the main contributor to the 
integral of ( 8 b )  and (8c), respectively; that is 

+ +  f --f + +  $ J ~ x  dy[{HU - U, + (;P + P )  hm} + {;Hu; + U . U, hw + ;hw p,}] = 0 
dt j-1 \ F . \  M - - 

6 .  

Mean flow energy Wave energy 
FLM 222 
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(up to O(a3))  represents no more than the energy exchange between the mean flow 
and the wave. 

3. Arnol’d’s method 
The constants of motion in Table 1 are used with the procedure devised by Arnol’d 

(1965, 1966) in order to find sufficient stability conditions. The method consists of 
constructing a certain integral of motion S and finding under what conditions it has 
an extremum for a particular basic flow ; those conditjons guarantee the stability of 
such an equilibrium solution. More precisely, let { U , N )  be an exact (nonlinear) 
solution of the equations of motion, then, if S[z, h] = constant, for any initial 
condition, and 

A S  = S[C+&,H+Sh]-S[U,NJ > 0 

for all finite per_turbations {a;, ah} that are different from zero and sufficiently small, 
the basic flow { U, IT) is stable. Notice that S[ U,  u] is con_stant because the basic flow 
is assumed steady. (If a certain S were maximum at  { U, N), instead of minimum, 
then by changing its sign it is cast in the form AS > 0). 

Now, let me expand the total variation AS into that part which is linear in the 
perturbation {&, Sh}, SS, that  part which is quadratic, S2S, etc. (Namely, AS = 
8S+S2S+ S3S+. . . ,where SnS = O(&, Sh)n.) Clearly, A S  > 0 requires 

SS = 0 and S2S > 0, V(&,Sh} $. {0,0}, b )  

because otherwise if SS were, say, positive for a certain {SG,Sh}, then it would be 
negative for { - SG, - Sh} ; positive definiteness of S2S follows from requiring AS > 0 
for an infinitesimal perturbation. Instead of A S  > 0 I shall use the weaker condition 
( lob ) .  

The functional S cannot be just the regular energy, since dE/dt = 0, equation (6), 
does not bound the growth of the perturbation, which is what is meant here by 
stability of the basic flow, because SE + 0. I n  the simplest case, S is the pseudoenergy, 
which is defined as that combination of the regular energy and a Casimir, S = E + C ,  
which makes AS, to lowest order, quadratic in the perturbation, i.e. such that (10a) 
is satisfied. 

The partition (7 )  gives, for the potential vorticity in each layer (omitting the layer 
subscript for simplicity), q = &+SC/h, exactly, with 

S 6 ~ i 3 a , S v - i 3 , S ~ - & S h ,  

+ o(s63, ah 862). q = &+--- 86 SCSh 
H H 2  

and, therefore, 

Using this in the Casimir conservation law 
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Once again, the right-hand side of (13a) does not contribute to (12) because it is time 
invariant, by construction. The trick is to choose F(q) so that, adding (6) and (12), 
the integral of (8 6 )  and (13b) cancel out, SE + SC = 0, and one is left with an integral 
of motion (the pseudoenergy) which is quadratic, to lowest order, in the perturbation. 

It might seem that such a function F(q)  could only be found in exceptional cases, 
because it is determined by two simultaneous equations. However, that is indeed not 
the case, because one of those equations is but the derivative of the other: the only 
con_dition needed in order to find F(q) ,  and therefore construct the pseudoenergy, is 
a,{ U, H) = 0 (i.e. for the basic flow to have the symmetry associated with energy 
conservation) : the balances of a steady s9lution yield F(q)  = qY(q) -B(q), where Y(Q) 
is the transport function and B(Q) ( = tV +P) is the Bernoulli function in the basic 
state. 

Pseudoenergy conservation then reads 

where 

and 

d 
dt 
-(AE+AC)=O, 

If one can prove that AC is positive definite for small enough perturbations (i.e. S2C 
positive definite; that is the purpose of the first condition) and equally so for AE 
(similarly for the second condition), then 

and 

S2E(0) + S2C(0) > S2E(t) > 0 

1 f P  st 2”* 

PE(0)  + PC(0)  > S2C(t) > 0 

Znd f f  1 st 

‘Small enough perturbation’ means such that the quadratic terms, S2E and S2C, 
dominate in the law of pseudoenergy conservation d(AE+AC)/dt = 0. 

Consequently, the first and second conditions imply that the wave energy and 
wave Casimir are bounded, at any time, by zero from below and by the value of the 
initial pseudoenergy from above, as indicated by the arrows. Equation (16) shows 
that the growth of the perturbation is bounded in an energy metric defined by the 
integral of (8c); hence the stability of the basic flow. Similarly, (17) bounds the 
growth of the perturbation potential vorticity, in a metric defined by the integral of 
(13c). 

5-2 
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I shall now discuss the breadth of these results. First, the perturbation can be 
somewhat more general than what is exemplified in (9), for example the conditions 
also prevent inertial (+or ‘symmetric’) instability; that is the reason for using the 
total perturbation, {6u, ah} and not just {Gw, hw}. 

Secondly, the stability conditions guarantee ‘formal ’ stability, which in turn 
implies the weaker properties of ‘linear’ and ‘spectral’ stability, in the notation of 
Holm et al. (1985) (see also McIntyre & Shepherd 1987). In  order to prove truly 
‘nonlinear’ or ‘normed ’ stability, i.e. in the Lyapunov sense, it is necessary to  make 
convexity estimates, which guarantee that the perturbation is completely bounded 
by a factor of its original size, in a suitable measure. Normed stability has only been 
proved, to my knowledge, for the N =  1 case and the quasi-geostropic models, 
systems for which AE is exactly quadratic, unlike the problem considered here; this 
is an unfortunate limitation of ageostropic three-dimensional dynamics, given the 
power of normed stability (e.g. see Shepherd 1988b). 

Thirdly, I have mentioned the possibility of pseudoenergy being a maximum a t  
the basic state (S  = E+C) ,  and not a minimum (S  = -E-C).  The latter, so called 
Amol’d’s (1966) second theorem, has only been proved, once again, for the N = 1 case 
and the quasi-geostrophic models, the reason being that those systems have only one 
independent dynamical field, the vorticity, and therefore a2E and S2C can be related, 
for an arbitrary perturbation. This is not the case here: &q does not determine 
{a;, ah}. 

Finally, three types of velocity field [U,, 51 for the basic flow can be considered : 
parallel, axisymmetric and non-parallel. 
- The parallel case, 

corresponds to a system homogeneous in x (e.g. a &plane or sphere, with topography 
a function only of latitude, and with coasts along parallels). -~ 

The axisymmetric flow, 
[Up 41 = Q,@) [-Y,XI, 

is a possible solution in a system with horizontal isotropy (e.g. anf-plane in a circular 
or unbounded domain, and with any topography, a function only of r ( =  
( X2 + y2)i). 

The non-parallel case, 
H*[U,, 61 = [-a,, %I q x ,  Y), 

corresponds to  a system that is neither homogeneous nor isotropic (e.g. a P-plane 
with meridional coasts or an isolated topographic feature). 

It may seem unnecessary to single out the symmetric cases, (18) and (19), since 
those flows are certainly particular limits of the non-parallel one, (20). However, this 
is not so, for two important reasons. 

First, in the symmetric cases we can get better stability conditions by including a 
term proportional to the corresponding momentum in the definition of the functional 
S ,  namely 

parallel S = E - d + C ,  ( 2 1 4  
axisymmetric : S = E - o A + C ,  (21 b) 
non-parallel : S = E+C,  (21 c )  
where a and w are arbitrary constants. Thus in the parallel (axisymmetric) case the 
Casimir C is chosen so that 6C cancels out GE-asM ( ~ E - w S A ) ,  not just 6E, as in the 
non-parallel case. Conditions derived requiring a2S > 0 from (21 a )  or (21 b )  are more 
powerful than that derived from (21 c) on account of the arbitrary constant a or o. 
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If the basic flow is not symmetric, even though some total momentum may be 
conserved, say M ,  it is+not possible to choose F(g)  so that 6C cancels out 6M: (21a) 
and (21 b )  require a,{U,W) = 0 and (ya,-xa,){U,W) = 0, respectively (i.e. for the 
basic flow to have the symmetry associated with each momentum conservation). 

It can be noted that the expression for F(q)  depends upon the particular form of 
the basic flow: in the non-parallel case, (21c), it is F(q)  = q!P(q)-B(q), as explained 
above; in both s mmetric cases, (2 la)  or (21b), to this expression for F(q) ,  
as Y(q) dq or - b f R 2 ( q )  dq, must be added where Y(Q) and R(Q) are the inverse of 
Q ( y )  and Q(r) ,  respectively. 

Second, if the system (model equations and boundary conditions) has a certain 
symmetry, then there are no non-parallel solutions of S2(E+ C) > 0 (Andrews 1984); 
Arnol’d stable solutions must have some symmetry, in which case use of the 
corresponding momentum, as in (21 a )  and (21 b )  gives a better stability condition. 
Briefly, the proof of that statement is as follows. Assume that the system is x- 
homogeneous: this implies that if $(x, y , t )  is a solution, where $ = {G,h}, then 
$(x+ ax, y ,  t )  must also be a solution for any ax. Since the integrals that define both 
E and C are also independent of a translation in x, then a2(E + C )  > 0 cannot exist for 
the particular perturbation 8$ = @(x+6x, y )  - @(x, y ) ,  where @ is any steady 
nonlinear solution : consequently, a, @ must vanish. 

Now, assume that a certain system has two symmetries, say, x-homogeneity and 
horizontal isotropy. An Arnol’d stable flow must be either parallel, in which case it 
will be a solution of a2(E - &+ C) > 0 with a 4 0, or axisymmetric, in which case it 
will be a solution of S2(E-wA+ C )  > 0 with w + 0. Notice (table 1) that the integral 
E-aM+C is not invariant under rotation, neither is the integral E-wA+C 
invariant under translation, and therefore there is no contradiction with Andrew’s 
theorem ; rather, this is a corollary of it. As an example, a 1;-layer circular vortex in 
anticyclonic solid-body rotation is proved to be stable, by showing that 
S2(E - o A  + C) > 0 with o equal to its angular velocity (Ripa 1987a), but S2(E + C )  is 
not sign definite. 

4. Sufficient stability conditions 
The Jirst stability condition is the one that assures that S2C is positive definite, and 

therefore that P E  is bounded from above, see (16). This condition is P”(Q) > 0 
everywhere, see (15), and is presented in the middle column of the upper part of table 
2 ; it must be satisfied in every layer ( j  = 1 , .  . . , n) and in all horizontal positions. 

The second stability condition is the one that assures that a2E is positive definite, 
and therefore that S2C is bounded from above; see (17). Unlike in the quasi- 
geostrophic models and the N = 1 case, for which h, = constant is used in the kinetic 
energy integral, a2E need not be positive definite : There might exist perturbations 
with ‘negative energy’, i.e. such that the perturbed state has less energy than the 
basic one, because the perturbation manages to decrease (increase) the total speed 
where it thickens (thins) the layer. Rewriting the leading order of the integrand of 
(14) as 
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Basic flow 

Parallel 

V J j 9  YI First condition Second condition 

[Uj? 01 uj-a cuj-.,= 
< h 

dQ,/dy < 4 

Auxiliary fields 

Parallel Axisymmetric Non-parallel 
yj (Uj-a) ’ /Hj  (Qj-u)2r21Hj (q+ q ) / H j  

pn=gh ( N = n + f )  or ,un= 00 ( N = n )  
and 

, j = n - 1 ,  ..., 1 Pj+l Yj+l 
Pj = 9;- 

&+l -YJ+l 
TABLE 2. Stability conditions 

it follows that a2E - or S2(E-CLM) or S2(E-oA) in the parallel or axisymmetric cases, 
respectively - is positive definite if, and only if, 

where the fields yI are defined as ( U , - O ~ ) ~ / H ~ ,  ( S Z , - W ) ~ / H ,  and (q+ C ) / H ,  in the 
parallel, axisymmetric and non-parallel cases, respectively. 

Thus, in the li-layer case, for which simply 8p = g’Sh, (22) is satisfied if and only 
if g’ > y ,  i.e. ( l b )  for parallel flow. Furthermore, in the 2-layer case, (22) requires 
g’ > y1  + g,, i.e. (1 c )  for parallel flow, because the rigid lid and rigid bottom boundary 
conditions require ah, + Sh, = 0.  

In the general case, it is better to make the rigid-lid approximation and rewrite 
(22) in terms of SC;, instead of Sh,. The first term, potential energy, is positive definite : 
from (4) it is Sp,,, - Sp, = g; SC, and Sh, = 8C;,.-l - SC;, ; rearranging sums (equivalent to 
a partial vertical integration) and using the appropriate top and bottom boundary 
condition, it follows that 

n “+fl c Sh,8P, = x g;8$; 
1-1 I - 1  

the sea-surface elevation term in the right-hand side, g SG, is excluded because of the 
rigid-lid approximation (5) .  (Recall that p I - p n  should be used, instead of p,, if both 
top and bottom boundaries are rigid.) The condition of positive definiteness (22) is 
then found equivalent to requiring that all the eigenvalues of a tri-diagonal matrix 
be positive (see, for instance, Bloom 1979). This way, the second stability condition 
is the one presented in the right column of the upper part of table 2, with the 
auxiliary fields p, and y, defined in the bottom part of that table. (If the rigid-lid 
approximation were not used, then the only change to be made in the definition of 
the p, is to replace g ;  by g ;  - y f / ( g -  yl) : since y 1  is at most O(g’,) this correction is 
insignificant for N > 1. In  the context of this work, the validity of the rigid-lid 
approximation is based in neglecting the sea-surface contribution to both the total 
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2-layer, flat bottom 2-layer, reduced gravity 

3-layer, flat bottom 3-layer, reduced gravity 

1 
1 

Y 3  

1 
1 

Y 3  

FIQURE 2. Region where the second stability condition (wave energy-momentum positive definite) 
is satisfied. The layer variables y, are defined as (U,-a)*/H,, (52,-o)2/H, and (q+ q ) / H ,  in the 
parallel, axisymmetric and non-parallel cases, respectively. 

N Second condition 

1 Always 

2 
14 9' ' Y 

3 
34 Pa < (g;-Yl+P)@-Ya)> with P = 9;-83YS/(B;-Ys)  

9' ' Y1 + 7 2  

(9; -~s)' < (s; + g ; - Y i - ~ s )  (92 -Ya 7 ~ 3 )  

2t s a  < (sI+s;-Yl)(d-ya) 

Type of basic flow: 

Parallel Axisymmetric Non-parallel 
Yj = (U , -aY /H,  (q--W)'IH, ( q + v ) l H ,  

Table 3. The second stability condition for systems where N < 4 

potential energy and the divergence in the upper layer.) The second condition must 
be satisfied for all horizontal positions, and for ( j  = 1, . . . , n) in the reduced-gravity 
case or ( j  = 1, . . . , n- 1)  in the rigid-bottom one. This condition requires 

Yj  .c Pj 9;. 
As a check, notice that one goes from N = n +  1 to N = n +  $ by making H,,, + CO, 

which implies Y,+~ + O .  Similarly, one formally goes from N = n+g to N = n by 
making gk + co. I say 'formally' because the n-layer model might have topography, 
and therefore is not truly derivable from the n+a-layer one. 
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The second condition, for systems with few layers (N  < 4 )  is spelled out in table 3 
and presented in figure 2. It is clear in that figure that the second condition (wave 
energy momentum positive definite) is more restrictive on the shear of the basic flow, 
as the number of layers is increased. 

The sufficient stability conditions presented in table 2 are the generalization of 
( l a )  and ( l b )  for the multi-layer case. Necessary instability conditions are the 
following. Non-parallel case: Either the first or second condition, OF both, must be 
violated somewhere. Parallel case : Idem, for any a. Axisymmetric case : Idem, for any 
0. 

5. From one to infinity: the ultraviolet problem 
A multi-layer system may be seen as a particular discretization of a continuously 

stratified one in a mixed formulation : Eulerian in the horizontal and Lagrangian in 
the vertical. (Not to be confused with the fully Eulerian one: the pseudoenergy 
AE + AC, or even a2E + PC, is the same in both formalisms, but that is not true for 
the wave energy S2E, which is positive definite in the latter and sign indefinite in the 
former (Ripa 1990).) More precisely, the vertical coordinate g is taken as the 
reference depth of each isopycnal; the actual depth equals CT plus the vertical 
displacement 6. The momentum and continuity equations are once again (3 ) ,  whereas 
(4 )  is replaced by (e.g. Ripa 1981, 1990) 

where A’- is the Brunt-Vaisala frequency (A ’ - ’ ( (cr )  is the vertical gradient of the 
reference buoyancy profile). 

It is then interesting to question whether the multi-layer stability conditions can 
be generalized to the continuously stratified case. This is clearly possible with the 
first condition (middle column of table 2) ; that is not the case at all with the second 
condition (right column). Assume that successive approximations of a continually 
stratified system are built by N-layer models, with increasing N .  As the layer 
thicknesses are diminished, say H + e H ,  with e < 1, so are the buoyancy jumps, g’+ 
eg’, but the fields y are increased, y + y/e,  and thus the second condition is harder to 
satisfy, by a factor of c ~ .  The inevitable conclusion is that there are no conditions 
on the basic flow that could assure that the wave energy or momentum of an 
arbitrary perturbation be positive definite : one has to resort to conditions that also 
involve properties of the disturbance. 

For instance, Holm & Long (1989) found, in the continuum system, 

for the stability of the non-parallel case, where m is a local vertical wavenumber of 
the perturbation ; immediate applications to the parallel and axisymmetric cases are 

U-a N2 

aQlay m2 
< o ,  -> (U-a)2 

for some a and 
Q-w N2 

aQlar m2 
> 0, - > ( Q - w ) 2 r 2  
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for some w .  Unlike the conditions in table 2, which only involve the basic flow, 
(24)-(26) also limit the vertical scale of the perturbations : short enough disturbances 
will violate it. In  other words, for an unstable flow that satisfies (24a), (25a) for some 
a, or (26a) for some w ,  whichever corresponds, the vertical scale of a growing 
perturbation must be small enough that (24b), (25b) or (26b) is violated. This 
'ultraviolet ' problem was first discussed by Blumen (1971), using normal modes in 
the pseudoenergy integral. 

Therefore, (24)-(26) are conditions for normal-mode stability (a claim otherwise by 
Holm & Long (1989) not withstanding), since in a general time-dependent problem, 
there is no way to assure that m2 will be bounded at  all times, even if it were so 
initially, as clearly pointed out by Carnevale et al. (1988) and Shepherd (1988~) .  
Notice that even in some linear cases the maximum of m2 might grow with time, as 
in the case of a wave packet approaching a critical layer. 

Conditions (24b)-(26b) are not directly related to the corresponding one in table 
2, but, rather, with a requirement of subcriticality, which is more demanding, i.e. it 
is 

Subcriticality * 2"d condition, 

but not vice versa. In order to see this in the context of the multi-layer model (finite 
N ) ,  assume that the perturbation were expanded, at each horizontal position, in 
terms of the vertical normal modes determined by the local density stratification of 
the basic state (e.g. see Ripa 1986) : equation (22) is found to be satisfied, using the 
Cauchy-Schwartz inequality, if u2+ P, (U-a)2 or ( 9 - w ) 2 r 2  is smaller than the 
minimum of A,  where {A}  is the spectrum of eigenvalues of the vertical modes. Now, 
that minimum of h tends to zero as N +  co, hence the existence of the ultraviolet 
problem also for the subcriticality condition, as expected (i.e. violation of the second 
condition implies likewise for the subcriticality one, but not otherwise). 

For N = 1; (and the particular case of a barotropic basic flow) both formulations 
are equivalent (i.e. in (2a) it is A2 = g'H) but in systems with more than one layer, 
that is no longer true, as it can be appreciated from figure 3. For instance, in the 2- 
layer analysis of hydrostatic Kelvin-Helmholtz instability (Ripa 1990), the 
subcriticality condition (U,  - U2)2 < 4g'H, H , / ( H ,  + E l 2 ) ,  is clearly more restrictive 
then the second stability condition 

(here expressed for the optimum value of a) ,  unless both layers happen to be equally 
deep. 

The conditions derived from conservation laws might be too restrictive as the 
vertical resolution is improved : using the equation for a normal-mode perturbation 
to a shear flow in a vertical plane without rotation, the two-dimensional Boussinesq 
problem, both Miles (1961) and Howard (1961) found Ri ( E .N2/e) > a as stability 
condition (Ri is the Richardson number). This equation does not involve the scale of 
the perturbation, unlike (25b), but, unfortunately, it  is obtained from an integral 
which is not the perturbation energy integral, or any other integral of motion. (The 
condition of Miles-Howard can be related to the energetics of particle interchange in 
the vertical though (Drazin & Reid 1981), but not to a field energy integral; the 
kinematics and dynamics of such exchange are ignored in that heuristic argument.) 

Abarbanel et al. (1986) assumed a horizontal flow of the form U(z)  + ey2 in order to 
break the potential vorticity degeneracy, and found U/U,,  > 0 and Ra ( 3  

~ J V ~ / [ ( U Z ) ~ ~  (p,)']) > 1 as nonlinear stability conditions, to lowest order in e.  Now, 
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2-layer, flat bottom 2-layer, reduced gravity 

3-layer, flat bottom 3-layer, reduced gravity 

FIQURE 3. Region where the subcriticality condition is satisfied ; this is much more restrictive than 
that of figure 2, with the exceptions of of the N = li model and the particular case of a barotropic 
basic flow. 

Ra > 1 is not comparable to Ri > 2, first of all because Ra and Ri are not the same 
number, but also because they refer to different basic flows : the metric used to obtain 
Ra > 1 blows up in the limit s+O. More importantly, it is only apparent that the 
condition Ra > 1 is free from the ultraviolet problem (because it makes no explicit 
reference to the shape of the perturbation) : the ordering in 6 indeed assumes a lower 
bound in the vertical scale of the disturbance. 

In  summary, normed stability (and Arnol’d’s second theorem) has been proved for 
the N = 1 case (and the quasi-geostropic models), formal stability is here proved for 
a general layered ageostrophic model, 1; < N < co, and only normal-mode stability 
has been proved in the continuously stratified case, ‘ N =  00 ’ .  The interplay of 
linear/nonlinear stability in the two-dimensional Boussinesq flow is, in my view, still 
an open problem, which will probably not be resolved with the use of conservation 
laws, but rather, by numerical integration. 

6. The structure of growing perturbations 
Laplace tidal equations - whose generalization with the inclusion of buoyancy 

effects are the primitive equations used here - are probably the archetype of ocean 
dynamical models. When they are linearized in the deviation from a resting ocean, 
two types of waves are found : Poincar6 and Rossby ones (or, rather, gravity waves 
and vortical modes, respectively, in the absence of Coriolis effects). Two is also the 
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number of conditions that guarantee the stability of the steady solutions of those 
equations. One may conjecture that growing perturbations from an unstable flow 
that violate the first condition but satisfy the seond one are Rossby-like. Conversely, 
an unstable steady solution that fulfills the first one but not the second is presumed 
to decay through the excitation of Poincard-like waves. 

This conjecture is based in two observations. First, a formally stable state is 
related to an isolated maximum of pseudo-energy-momentum, S2S > 0, whereas an 
unstable one has the structure of, say, a saddle point in phase space; growing 
perturbations represent a route of escape from the basic state along the S2X = 0 sub- 
space. For instance, for a normal mode growing like cut, since S2S is both constant and 
proportional to e2vt, then such integral must vanish identically. Second, Poincard 
and Rossby perturbations contribute mainly to the wave energy (or wave energy 
momentum) and wave Casimir parts of S2S, respectively. That is certainly the case 
for their contribution to either part of the pseudomomentum relative to a resting 
ocean (Ripa 1982); pseudoenergy relative to a resting ocean is but regular energy. 

Consequently, if S2E is positive definite (the second condition is fulfilled) then it 
takes a Rossby wave to make S2C negative enough for a perturbation to grow. 
Conversely, if a2C is positive definite (the first condition is satisfied) it takes a 
Poincard wave to make S2E negative enough. For an x-symmetric (axisymmetric) 
basic state, in the last two sentences S2E should be replaced by S2E-aS2M 
(S2E-wS2A), where a ( w )  is any value such that only one of the conditions is violated. 

More precisely, a Poincard wave is characterized by 86 x 0 (=  hdq;  see ( l l ) ) ,  
whereas a Rossby one by Su, + Sv, x 0, by analogy with free waves in a resting ocean 
(e.g. see Ripa 1981) ; a quantitative measure of the Poincard/Rossby dominance 
would then be the ratio 

(28) 

The transparency of the wave Casimir to Poincark disturbances is then obvious. On 
the other hand, if Rossby waves have a structure similar to that in a quasi-geostropic 
model (I am working with expressions for contimous stratification for simplicity, 
but the argument follows the same lines in a layered system) : Su x -a,p), Sv x azp), 

6h x -a,( f,, JlrP2 aZp)),+it follows that their contribution a S2M, or w S2A vanishes, and 
that the integral of U - SGSh is also negligible, as img as the horizontal (vertical) 
shear of the basic flow is much smaller than lfol (N). 

Some evidence in support of the conjecture follows, albeit not in the form of the 
ratio x. 

Marinone & Ripa (1984) studied unstable easterly equatorial jets in a 1;-layer 
model. A narrow jet violated the first condition, (1 a), but not the second one, (1 b)  ; 
the opposite was true for a jet with a width equal to the deformation radius: the 
structure of growing perturbations in each case was like those just described 
(Rossby- and Poincark-like, respectively). This is a good test for the conjecture, 
because in the equatorial wave guide there is not always a clear cut distinction 
between Rossby and Poincark waves (i.e. it is possible to go smoothly from one to 
the other type), on account of the zero crossing of the Coriolis ‘parameter’. 

Sakai (1989) studied the stability of the 2-layer model in a channel, for the case in 
which the basic flow has no horizontal shear. The first condition, (2a), is violated for 
any value of a; fulfilment of the second condition, (1 c), for the optimum value of a, 
requires the Froude number Fr to be smaller than 4 2  (i.e. equation (27) for H I  = 
H 2 ) .  Now, for Fr 6 4 2 ,  Sakai finds only baroclinic instability, for which growing 
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modes are Rossby-like, as conjectured here. Since for Fr 2 4 2  both conditions are 
violated, for any value of a, the conjecture does not apply. However, it is interesting 
to point out that for Fr 2 4 2  Sakai finds a mixed mode, Rossby-Kelvin, of 
instability, and that Kelvin-Helmholtz instability is found for Fr % 4 2 .  

Finally, Barth (1989a, b)  studied the stability of a coastal front using the so-called 
geostropic momentum equations, which are quite different from the primitive 
equations used here, in the sense that the main balance is assumed to be geostrophic 
(the ageostrophic velocity components are diagnostic variables). Nevertheless, Barth 
finds exactly the same conditions, namely (2a) and (1 c). He then studies an unstable 
case in which only the first condition is violated (uniform potential vorticity in the 
upper layer) and finds a ‘significant ageostropic component of the velocity field’ in 
the growing perturbations, in spite of the equations used ; it would be interesting to 
compute the value of x for this solution, and to repeat the calculation with the full 
primitive equations. 

7. Discussion 
Stability is such a mighty, but still model- and definition-dependent, concept. 

Thus, a certain flow might be stable in the framework of a particular model and 
become unstable once this is changed, say by relaxing one of the assumptions with 
which it was set up. For instance Kelvin-Helmholtz instability can be prevented in 
a two-layer hydrostatic model, if the shear does not exceed a certain threshold, (27), 
but the flow will always be unstable to horizontally short enough perturbations, as 
soon as the hydrostatic approximation is not made. As another example, for a certain 
current the choice of whether it will be unstable could depend on whether the quasi- 
geostropic approximation is invoked. 

This dependence on the model, even though it makes the application to 
observations more difficult, could be beneficial, because models usually differ in the 
physics they represent. For instance, one way of describing the contrast between a 
primitive equation and a quasi-geostrophic model is by pointing out that the latter 
lacks the degrees of freedom of the former corresponding to Poincar6 waves. 
Therefore, if some flow is stable according to a quasi-geostropic model, but not so in 
a primitive-equation one, we might expect that growing perturbations will in some 
way resemble Poincar6 or gravity waves, as conjectuxed in 56. 

What cannot be done, however, is to use the results of one model in the domain 
of another model. Self evident as it may seem, this principle is ignored quite often; 
one sees researchers using 8- U,, in the equatorial region, or authors astonished to 
find a front (which cannot be studied by a quasi-geostrophic model) to be unstable 
even though the potential vorticity is uniform. Problems in which the horizontal 
divergence is important are better studied by a primitive-equation model. Two 
stability conditions are then needed. The f i s t  one, the equivalent to Rayleigh’s 
inflection point theorem, is shared with the quasi-geostrophic models ; this condition 
assures that a quadratic wave energy momentum is bounded from above. The second 
condition is present in order to guarantee that wave energy momentum is positive 
definite, i.e. bounded from below. Thus in the example of the unstable front, or in the 
Kelvin-Helmholtz problem, growing perturbations have negative or vanishing wave 
energy and momentum ; the sign of the energy transfer between mean flow and wave 
might not be very enlightening in such a case. 

The second stability condition, the one that assures that the wave energy 
momentum is positive definite, is harder and harder to satisfy as the number of layers 
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is increased. Does that mean that a current with vertical shear is always unstable, 
if vertical resolution of the model is good enough ? Or does this point to a limitation 
of Amol'd's method ? Probably the second : the concept of stability is not independent 
of the particular definition used, i.e. of the measure of the system's departure from 
the basic state. The metric used in this paper is a wave energy momentum, because 
the stability conditions are derived from the conservation laws. A vertically sheared 
parallel flow, in the non-rotating case, is stable in the normal-mode sense (the 
frequency of all infinitesimal waves have non-positive imaginary part) if the 
Richardson number is everywhere larger than one fourth; yet, it has not been 
possible to prove this stability with the methods of this paper. 

Stability is a model- and definition-dependent concept. In exploring the former 
with different definitions of stability, we end up, many times, surveying the range of 
diverse methods, rather than establishing absolute truths on the physics of a given 
system. 

I am sincerely grateful for the help of Fabian Rosas with the drawings, and of Pepe 
Ochoa and Miguel Lavin with the text. Both reviewers were very helpful in 
improving the former versions of the paper. This work was funded by MBxico's 
Secretaria de Programaci6n y Presupuesto. 

Appendix. Potential energy 

and p,, from (4 ) .  Write 

where the i, are constants. In a layer that is horizontally unbounded, a typical choice 
for h" is the average thickness (i.e. the average 6 vanishes). On the other hand, for a 
layer with a finite domain (e.g. bounded by outcropping interfaces), h" = 0 could be 
chosen. Strictly speaking, the i, are arbitrary. 

It is useful to spell out the relationship between the density and pressure fields, h, 

(A 1) h, = i, + Q - 1 -  cj, 

The inverse of (A 1 )  is 
n 

+ S + l  
ct = c,+ (h,-i,) (i = o ,..., n - 1 ) .  

On the other hand, the hydrostatic balance (4a )  implies 
t-1 

Pr = CI g;Q7 

3-0 

where it is understood gh = g ,  and co is the sea-surface elevation. 
Consider first the case of reduced gravity: pn+, = 0 implies 

,-0 

Solving this equation for cn, an dusing (A 2) in (A 3), it follows that 

with 

n 

1-1 

p ,  E G,,(h,-h",) ( i  = 1 , .  . . , n) ,  
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and where a and b are the minimum and maximum of {i,j}, respectively. In  the rigid- 
lid approximation, q-f 00, G, reduces to just the middle summation. 

Consider now the rigid-bottom case : instead of being determined by (A 4), 6,(;) is 
now given by a time-independent function, which represents the topography. 
Without the rigid-lid approximation, simply using (A 2)  in (A 3) results in 

where now G, is given by the first summation in (A 6); recall that  the first term is 
time-independent. Finally, with the rigid-lid approximation, using 

in ( A 3 ) ,  

i 

Ci = - c ( h j - i j )  
j=1 

n 

is obtained, with the same Gij .  
Equations (A 5 ) ,  (A 7)  or (A 9) are not explicitly used in the main text; the only 

important point about them is that the matrix Gij is symmetric, from where it follows 
that 

up to a term whose horizontal integral is an exact time derivative (i.e. that obtained 
replacing h, by 5). Notice that this is true for all four possible combinations of top 
and bottom boundary conditions : with or without a rigid lid and for reduced gravity 
or a rigid bottom. I n  the particular case of a rigid lid and rigid bottom, p j  must be 
replaced by p,-p,, as in table 1. 
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